Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.091
Filtrar
1.
BMC Microbiol ; 24(1): 128, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641593

RESUMO

BACKGROUND: Biofilm formation is viewed as a vital mechanism in C. glabrata pathogenesis. Although, it plays a significant role in virulence but transcriptomic architecture and metabolic pathways governing the biofilm growth mode of C. glabrata remain elusive. The present study intended to investigate the genes implicated in biofilm growth phase of C. glabrata through global transcriptomic approach. RESULTS: Functional analysis of Differentially expressed genes (DEGs) using gene ontology and pathways analysis revealed that upregulated genes are involved in the glyoxylate cycle, carbon-carbon lyase activity, pre-autophagosomal structure membrane and vacuolar parts whereas, down- regulated genes appear to be associated with glycolysis, ribonucleoside biosynthetic process, ribosomal and translation process in the biofilm growth condition. The RNA-Seq expression of eight selected DEGs (CgICL1, CgMLS1, CgPEP1, and CgNTH1, CgERG9, CgERG11, CgTEF3, and CgCOF1) was performed with quantitative real-time PCR (RT-qPCR). The gene expression profile of selected DEGs with RT-qPCR displayed a similar pattern of expression as observed in RNA-Seq. Phenotype screening of mutant strains generated for genes CgPCK1 and CgPEP1, showed that Cgpck1∆ failed to grow on alternative carbon substrate (Glycerol, Ethanol, Oleic acid) and similarly, Cgpep1∆ unable to grow on YPD medium supplemented with hydrogen peroxide. Our results suggest that in the absence of glucose, C. glabrata assimilate glycerol, oleic acid and generate acetyl coenzyme-A (acetyl-CoA) which is a central and connecting metabolite between catabolic and anabolic pathways (glyoxylate and gluconeogenesis) to produce glucose and fulfil energy requirements. CONCLUSIONS: The study was executed using various approaches (transcriptomics, functional genomics and gene deletion) and it revealed that metabolic plasticity of C. glabrata (NCCPF-100,037) in biofilm stage modulates its virulence and survival ability to counter the stress and may promote its transition from commensal to opportunistic pathogen. The observations deduced from the present study along with future work on characterization of the proteins involved in this intricate process may prove to be beneficial for designing novel antifungal strategies.


Assuntos
Candida glabrata , Ácido Oleico , Candida glabrata/genética , Candida glabrata/metabolismo , Ácido Oleico/metabolismo , Carbono/metabolismo , Glicerol , Antifúngicos/metabolismo , Estresse Oxidativo , Biofilmes , Glucose/metabolismo , Glioxilatos/metabolismo
2.
mSystems ; 9(3): e0083923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315666

RESUMO

Engineering microbial hosts to synthesize pyruvate derivatives depends on blocking pyruvate oxidation, thereby causing severe growth defects in aerobic glucose-based bioprocesses. To decouple pyruvate metabolism from cell growth to improve pyruvate availability, a genome-scale metabolic model combined with constraint-based flux balance analysis, geometric flux balance analysis, and flux variable analysis was used to identify genetic targets for strain design. Using translation elements from a ~3,000 cistronic library to modulate fxpK expression in a bicistronic cassette, a bifido shunt pathway was introduced to generate three molecules of non-pyruvate-derived acetyl-CoA from one molecule of glucose, bypassing pyruvate oxidation and carbon dioxide generation. The dynamic control of flux distribution by T7 RNAP-mediated synthetic small RNA decoupled pyruvate catabolism from cell growth. Adaptive laboratory evolution and multi-omics analysis revealed that a mutated isocitrate dehydrogenase functioned as a metabolic switch to activate the glyoxylate shunt as the only C4 anaplerotic pathway to generate malate from two molecules of acetyl-CoA input and bypass two decarboxylation reactions in the tricarboxylic acid cycle. A chassis strain for pyruvate derivative synthesis was constructed to reduce carbon loss by using the glyoxylate shunt as the only C4 anaplerotic pathway and the bifido shunt as a non-pyruvate-derived acetyl-CoA synthetic pathway and produced 22.46, 27.62, and 6.28 g/L of l-leucine, l-alanine, and l-valine by a controlled small RNA switch, respectively. Our study establishes a novel metabolic pattern of glucose-grown bacteria to minimize carbon loss under aerobic conditions and provides valuable insights into cell design for manufacturing pyruvate-derived products.IMPORTANCEBio-manufacturing from biomass-derived carbon sources using microbes as a cell factory provides an eco-friendly alternative to petrochemical-based processes. Pyruvate serves as a crucial building block for the biosynthesis of industrial chemicals; however, it is different to improve pyruvate availability in vivo due to the coupling of pyruvate-derived acetyl-CoA with microbial growth and energy metabolism via the oxidative tricarboxylic acid cycle. A genome-scale metabolic model combined with three algorithm analyses was used for strain design. Carbon metabolism was reprogrammed using two genetic control tools to fine-tune gene expression. Adaptive laboratory evolution and multi-omics analysis screened the growth-related regulatory targets beyond rational design. A novel metabolic pattern of glucose-grown bacteria is established to maintain growth fitness and minimize carbon loss under aerobic conditions for the synthesis of pyruvate-derived products. This study provides valuable insights into the design of a microbial cell factory for synthetic biology to produce industrial bio-products of interest.


Assuntos
Glucose , Piruvatos , Acetilcoenzima A/genética , Glucose/metabolismo , Glioxilatos/metabolismo , RNA
3.
J Inherit Metab Dis ; 47(2): 280-288, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200664

RESUMO

Glyoxylate is a key metabolite generated from various precursor substrates in different subcellular compartments including mitochondria, peroxisomes, and the cytosol. The fact that glyoxylate is a good substrate for the ubiquitously expressed enzyme lactate dehydrogenase (LDH) requires the presence of efficient glyoxylate detoxification systems to avoid the formation of oxalate. Furthermore, this detoxification needs to be compartment-specific since LDH is actively present in multiple subcellular compartments including peroxisomes, mitochondria, and the cytosol. Whereas the identity of these protection systems has been established for both peroxisomes and the cytosol as concluded from the deficiency of alanine glyoxylate aminotransferase (AGT) in primary hyperoxaluria type 1 (PH1) and glyoxylate reductase (GR) in PH2, the glyoxylate protection system in mitochondria has remained less well defined. In this manuscript, we show that the enzyme glyoxylate reductase has a bimodal distribution in human embryonic kidney (HEK293), hepatocellular carcinoma (HepG2), and cervical carcinoma (HeLa) cells and more importantly, in human liver, and is actively present in both the mitochondrial and cytosolic compartments. We conclude that the metabolism of glyoxylate in humans requires the complicated interaction between different subcellular compartments within the cell and discuss the implications for the different primary hyperoxalurias.


Assuntos
Oxirredutases do Álcool , Mitocôndrias Hepáticas , Transaminases , Humanos , Mitocôndrias Hepáticas/metabolismo , Células HEK293 , Oxalatos/metabolismo , Fígado/metabolismo , Glioxilatos/metabolismo
4.
Eur J Med Chem ; 265: 116058, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38128237

RESUMO

The significant challenge in confronting TB eradication is the discursive treatment that results in the disease reactivation, patient non compliance and drug resistance. The presently available drug regimen for TB largely targets the active bacilli and thus remains inadequate against the dormant or persistent subpopulation of Mtb that results in latent TB affecting a quarter of the global population. The crucial pathways that are particularly essential for the survival of dormant Mtb demand better apprehension. Novel drugs are needed to specifically address these persisters in order to enhance treatment effectiveness. Among such pathways, the glyoxylate bypass plays a critical role in the persistence and latent infection of Mtb, making it a promising target for drug development in recent years. In this review, we have compiled the attributes of bacterial subpopulations liable for latent TB and the pathways indispensable for their survival. Specifically, we delve into the glyoxylate shunt pathway and its key enzymes as potential drug targets.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Antituberculosos/metabolismo , Tuberculose Latente/tratamento farmacológico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Descoberta de Drogas , Glioxilatos/metabolismo , Glioxilatos/uso terapêutico
5.
Inflamm Res ; 72(12): 2111-2126, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924395

RESUMO

OBJECTIVE AND DESIGN: Kidney stones commonly occur with a 50% recurrence rate within 5 years, and can elevate the risk of chronic kidney disease. Macrophage-to-myofibroblast transition (MMT) is a newly discovered mechanism that leads to progressive fibrosis in different forms of kidney disease. In this study, we aimed to investigate the role of MMT in renal fibrosis in glyoxylate-induced kidney stone mice and the mechanism by which signal transducer and activator of transcription 6 (STAT6) regulates MMT. METHODS: We collected non-functioning kidneys from patients with stones, established glyoxylate-induced calcium oxalate stone mice model and treated AS1517499 every other day in the treatment group, and constructed a STAT6-knockout RAW264.7 cell line. We first screened the enrichment pathway of the model by transcriptome sequencing; detected renal injury and fibrosis by hematoxylin eosin staining, Von Kossa staining and Sirius red staining; detected MMT levels by multiplexed immunofluorescence and flow cytometry; and verified the binding site of STAT6 at the PPARα promoter by chromatin immunoprecipitation. Fatty acid oxidation (FAO) and fibrosis-related genes were detected by western blot and real-time quantitative polymerase chain reaction. RESULTS: In this study, we found that FAO was downregulated, macrophages converted to myofibroblasts, and STAT6 expression was elevated in stone patients and glyoxylate-induced kidney stone mice. The promotion of FAO in macrophages attenuated MMT and upregulated fibrosis-related genes induced by calcium oxalate treatment. Further, inhibition of peroxisome proliferator-activated receptor-α (PPARα) eliminated the effect of STAT6 deletion on FAO and fibrosis-associated protein expression. Pharmacological inhibition of STAT6 also prevented the development of renal injury, lipid accumulation, MMT, and renal fibrosis. Mechanistically, STAT6 transcriptionally represses PPARα and FAO through cis-inducible elements located in the promoter region of the gene, thereby promoting MMT and renal fibrosis. CONCLUSIONS: These findings establish a role for STAT6 in kidney stone injury-induced renal fibrosis, and suggest that STAT6 may be a therapeutic target for progressive renal fibrosis in patients with nephrolithiasis.


Assuntos
Cálculos Renais , Miofibroblastos , Animais , Humanos , Camundongos , Oxalato de Cálcio/metabolismo , Oxalato de Cálcio/farmacologia , Ácidos Graxos/metabolismo , Fibrose , Glioxilatos/metabolismo , Glioxilatos/farmacologia , Rim/patologia , Cálculos Renais/metabolismo , Cálculos Renais/patologia , Macrófagos/metabolismo , Miofibroblastos/patologia , Oxalatos/metabolismo , Oxalatos/farmacologia , PPAR alfa/metabolismo , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo
6.
World J Microbiol Biotechnol ; 39(12): 339, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37821748

RESUMO

The capacity of Pseudomonas aeruginosa to assimilate nutrients is essential for niche colonization and contributes to its pathogenicity. Isocitrate lyase (ICL), the first enzyme of the glyoxylate cycle, redirects isocitrate from the tricarboxylic acid cycle to render glyoxylate and succinate. P. aeruginosa ICL (PaICL) is regarded as a virulence factor due to its role in carbon assimilation during infection. The AceA/ICL protein family shares the catalytic domain I, triosephosphate isomerase barrel (TIM-barrel). The carboxyl terminus of domain I is essential for Escherichia coli ICL (EcICL) of subfamily 1. PaICL, which belongs to subfamily 3, has domain II inserted at the periphery of domain I, which is believed to participate in enzyme oligomerization. In addition, PaICL has the α13-loop-α14 (extended motif), which protrudes from the enzyme core, being of unknown function. This study investigates the role of domain II, the extended motif, and the carboxyl-terminus (C-ICL) and amino-terminus (N-ICL) regions in the function of the PaICL enzyme, also as their involvement in the virulence of P. aeruginosa PAO1. Deletion of domain II and the extended motif results in enzyme inactivation and structural instability of the enzyme. The His6-tag fusion at the C-ICL protein produced a less efficient enzyme than fusion at the N-ICL, but without affecting the acetate assimilation or virulence. The PaICL homotetrameric structure of the enzyme was more stable in the N-His6-ICL than in the C-His6-ICL, suggesting that the C-terminus is critical for the ICL quaternary conformation. The ICL-mutant A39 complemented with the recombinant proteins N-His6-ICL or C-His6-ICL were more virulent than the WT PAO1 strain. The findings indicate that the domain II and the extended motif are essential for the ICL structure/function, and the C-terminus is involved in its quaternary structure conformation, confirming that in P. aeruginosa, the ICL is essential for acetate assimilation and virulence.


Assuntos
Isocitrato Liase , Pseudomonas aeruginosa , Isocitrato Liase/genética , Isocitrato Liase/química , Isocitrato Liase/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Ciclo do Ácido Cítrico , Glioxilatos/metabolismo , Acetatos/metabolismo
7.
Free Radic Biol Med ; 208: 771-779, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37758122

RESUMO

Disrupting mitochondrial superoxide dismutase (SOD) causes neonatal lethality in mice and death of flies within 24 h after eclosion. Deletion of mitochondrial sod genes in C. elegans impairs fertility as well, but surprisingly is not detrimental to survival of progeny generated. The comparison of metabolic pathways among mouse, flies and nematodes reveals that mice and flies lack the glyoxylate shunt, a shortcut that bypasses part of the tricarboxylic acid (TCA) cycle. Here we show that ICL-1, the sole protein that catalyzes the glyoxylate shunt, is critical for protection against embryonic lethality resulting from elevated levels of mitochondrial superoxide. In exploring the mechanism by which ICL-1 protects against ROS-mediated embryonic lethality, we find that ICL-1 is required for the efficient activation of mitochondrial unfolded protein response (UPRmt) and that ATFS-1, a key UPRmt transcription factor and an activator of icl-1 gene expression, is essential to limit embryonic/neonatal lethality in animals lacking mitochondrial SOD. In sum, we identify a biochemical pathway that highlights a molecular strategy for combating toxic mitochondrial superoxide consequences in cells.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Camundongos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Superóxidos/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Resposta a Proteínas não Dobradas , Glioxilatos/metabolismo
8.
Molecules ; 28(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37764443

RESUMO

In fungi, the methylcitrate cycle converts cytotoxic propionyl-coenzyme A (CoA) to pyruvate, which enters gluconeogenesis. The glyoxylate cycle converts acetyl-CoA to succinate, which enters gluconeogenesis. The tricarboxylic acid cycle is a central carbon metabolic pathway that connects the methylcitrate cycle, the glyoxylate cycle, and other metabolisms for lipids, carbohydrates, and amino acids. Fungal citrate synthase and 2-methylcitrate synthase as well as isocitrate lyase and 2-methylisocitrate lyase, each evolved from a common ancestral protein. Impairment of the methylcitrate cycle leads to the accumulation of toxic intermediates such as propionyl-CoA, 2-methylcitrate, and 2-methylisocitrate in fungal cells, which in turn inhibits the activity of many enzymes such as dehydrogenases and remodels cellular carbon metabolic processes. The methylcitrate cycle and the glyoxylate cycle synergistically regulate carbon source utilization as well as fungal growth, development, and pathogenic process in pathogenic fungi.


Assuntos
Ciclo do Ácido Cítrico , Fungos , Acetilcoenzima A , Fungos/metabolismo , Carbono/metabolismo , Glioxilatos/metabolismo
9.
Appl Environ Microbiol ; 89(7): e0023823, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37318336

RESUMO

Metabolic degeneracy describes the phenomenon that cells can use one substrate through different metabolic routes, while metabolic plasticity, refers to the ability of an organism to dynamically rewire its metabolism in response to changing physiological needs. A prime example for both phenomena is the dynamic switch between two alternative and seemingly degenerate acetyl-CoA assimilation routes in the alphaproteobacterium Paracoccus denitrificans Pd1222: the ethylmalonyl-CoA pathway (EMCP) and the glyoxylate cycle (GC). The EMCP and the GC each tightly control the balance between catabolism and anabolism by shifting flux away from the oxidation of acetyl-CoA in the tricarboxylic acid (TCA) cycle toward biomass formation. However, the simultaneous presence of both the EMCP and GC in P. denitrificans Pd1222 raises the question of how this apparent functional degeneracy is globally coordinated during growth. Here, we show that RamB, a transcription factor of the ScfR family, controls expression of the GC in P. denitrificans Pd1222. Combining genetic, molecular biological and biochemical approaches, we identify the binding motif of RamB and demonstrate that CoA-thioester intermediates of the EMCP directly bind to the protein. Overall, our study shows that the EMCP and the GC are metabolically and genetically linked with each other, demonstrating a thus far undescribed bacterial strategy to achieve metabolic plasticity, in which one seemingly degenerate metabolic pathway directly drives expression of the other. IMPORTANCE Carbon metabolism provides organisms with energy and building blocks for cellular functions and growth. The tight regulation between degradation and assimilation of carbon substrates is central for optimal growth. Understanding the underlying mechanisms of metabolic control in bacteria is of importance for applications in health (e.g., targeting of metabolic pathways with new antibiotics, development of resistances) and biotechnology (e.g., metabolic engineering, introduction of new-to-nature pathways). In this study, we use the alphaproteobacterium P. denitrificans as model organism to study functional degeneracy, a well-known phenomenon of bacteria to use the same carbon source through two different (competing) metabolic routes. We demonstrate that two seemingly degenerate central carbon metabolic pathways are metabolically and genetically linked with each other, which allows the organism to control the switch between them in a coordinated manner during growth. Our study elucidates the molecular basis of metabolic plasticity in central carbon metabolism, which improves our understanding of how bacterial metabolism is able to partition fluxes between anabolism and catabolism.


Assuntos
Paracoccus denitrificans , Acetilcoenzima A/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Glioxilatos/metabolismo
10.
Sci Rep ; 13(1): 7345, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147430

RESUMO

Allantoin is a good source of ammonium for many organisms, and in Escherichia coli it is utilized under anaerobic conditions. We provide evidence that allantoinase (AllB) is allosterically activated by direct binding of the allantoin catabolic enzyme, glycerate 2-kinase (GlxK) in the presence of glyoxylate. Glyoxylate is known to be an effector of the AllR repressor which regulates the allantoin utilization operons in E. coli. AllB has low affinity for allantoin, but its activation by GlxK leads to increased affinity for its substrate. We also show that the predicted allantoin transporter YbbW (re-named AllW) has allantoin specificity and the protein-protein interaction with AllB. Our results show that the AllB-dependent allantoin degradative pathway is subject to previously unrecognized regulatory mechanisms involving direct protein-protein interactions.


Assuntos
Alantoína , Escherichia coli , Alantoína/química , Escherichia coli/metabolismo , Amidoidrolases/metabolismo , Glioxilatos/metabolismo
11.
Yeast ; 40(7): 265-275, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37170862

RESUMO

Debaryomyces hansenii is a halotolerant/halophilic yeast usually found in salty environments. The yeast accumulated sodium at high concentrations, which improved growth in salty media. In contrast, lithium was toxic even at low concentrations and its presence prevented cell proliferation. To analyse the responses to both cations, metabolite levels, enzymatic activities and gene expression were determined, showing that NaCl and LiCl trigger different cellular responses. At high concentrations of NaCl (0.5 or 1.5 M) cells accumulated higher amounts of the intermediate metabolites glyoxylate and malate and, at the same time, the levels of intracellular oxoglutarate decreased. Additionally, 0.5 M NaCl increased the activity of the enzymes isocitrate lyase and malate synthase involved in the synthesis of glyoxylate and malate respectively and decreased the activity of isocitrate dehydrogenase. Moreover, transcription of the genes coding for isocitrate lyase and malate synthase was activated by NaCl. Also, cells accumulated phosphate upon NaCl exposure. None of these effects was provoked when LiCl (0.1 or 0.3 M) was used instead of NaCl. Lithium induced accumulation of higher amounts of oxoglutarate and decreased the concentrations of glyoxylate and malate to non-detectable levels. Cells incubated with lithium also showed higher activity of the isocitrate dehydrogenase and neither increased isocitrate lyase and malate synthase activities nor the transcription of the corresponding genes. In summary, we show that sodium, but not lithium, up regulates the shunt of the glyoxylic acid in D. hansenii and we propose that this is an important metabolic adaptation to thrive in salty environments.


Assuntos
Debaryomyces , Sódio , Cloreto de Sódio/farmacologia , Malato Sintase/genética , Malato Sintase/metabolismo , Isocitrato Liase/genética , Isocitrato Liase/metabolismo , Malatos , Debaryomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Isocitrato Desidrogenase/genética , Carbono , Ácidos Cetoglutáricos , Glioxilatos/metabolismo
12.
Urolithiasis ; 51(1): 49, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36920530

RESUMO

In primary hyperoxaluria type 1 excessive endogenous production of oxalate and glycolate leads to increased urinary excretion of these metabolites. Although genetic testing is the most definitive and preferred diagnostic method, quantification of these metabolites is important for the diagnosis and evaluation of potential therapeutic interventions. Current metabolite quantification methods use laborious, technically highly complex and expensive liquid, gas or ion chromatography tandem mass spectrometry, which are available only in selected laboratories worldwide. Incubation of ortho-aminobenzaldehyde (oABA) with glyoxylate generated from glycolate using recombinant mouse glycolate oxidase (GO) and glycine leads to the formation of a stable dihydroquinazoline double aromatic ring chromophore with specific peak absorption at 440 nm. The urinary limit of detection and estimated limit of quantification derived from eight standard curves were 14.3 and 28.7 µmol glycolate per mmol creatinine, respectively. High concentrations of oxalate, lactate and L-glycerate do not interfere in this assay format. The correlation coefficient between the absorption and an ion chromatography tandem mass spectrometry method is 93% with a p value < 0.00001. The Bland-Altmann plot indicates acceptable agreement between the two methods. The glycolate quantification method using conversion of glycolate via recombinant mouse GO and fusion of oABA and glycine with glyoxylate is fast, simple, robust and inexpensive. Furthermore this method might be readily implemented into routine clinical diagnostic laboratories for glycolate measurements in primary hyperoxaluria type 1.


Assuntos
Hiperoxalúria Primária , Hiperoxalúria , Camundongos , Animais , Hiperoxalúria Primária/terapia , Oxalatos/urina , Glicolatos/urina , Glioxilatos/metabolismo , Glicina , Hiperoxalúria/diagnóstico , Hiperoxalúria/urina
13.
Comput Biol Chem ; 104: 107828, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36893566

RESUMO

The bacteria Mycobacterium tuberculosis is responsible for the infectious disease Tuberculosis. Targeting the tubercule bacteria is an important challenge in developing the antimycobacterials. The glyoxylate cycle is considered as a potential target for the development of anti-tuberculosis agents, due to its absence in the humans. Humans only possess tricarboxylic acid cycle, while this cycle gets connected to glyoxylate cycle in microbes. Glyoxylate cycle is essential to the Mycobacterium for its growth and survival. Due to this reason, it is considered as a potential therapeutic target for the development of anti-tuberculosis agents. Here, we explore the effect on the behavior of the tricarboxylic acid cycle, glyoxylate cycle and their integrated pathway with the bioenergetics of the Mycobacterium, under the inhibition of key glyoxylate cycle enzymes using Continuous Petri net. Continuous Petri net is a special Petri net used to perform the quantitative analysis of the networks. We first study the tricarboxylic acid cycle and glyoxylate cycle of the tubercule bacteria by simulating its Continuous Petri net model under different scenarios. Both the cycles are then integrated with the bioenergetics of the bacteria and the integrated pathway is again simulated under different conditions. The simulation graphs show the metabolic consequences of inhibiting the key glyoxylate cycle enzymes and adding the uncouplers on the individual as well as integrated pathway. The uncouplers that inhibit the synthesis of adenosine triphosphate, play an important role as anti-mycobacterials. The simulation study done here validates the proposed Continuous Petri net model as compared with the experimental outcomes and also explains the consequences of the enzyme inhibition on the biochemical reactions involved in the metabolic pathways of the mycobacterium.


Assuntos
Mycobacterium tuberculosis , Humanos , Metabolismo Energético , Ciclo do Ácido Cítrico/fisiologia , Antituberculosos/farmacologia , Antituberculosos/metabolismo , Glioxilatos/metabolismo , Glioxilatos/farmacologia
14.
Biochem Biophys Res Commun ; 645: 118-123, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36682331

RESUMO

Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal disease caused by mutations in AGXT that lead to the deficiency of alanine:glyoxylate aminotransferase (AGT). AGT is a liver pyridoxal 5'-phosphate (PLP)-dependent enzyme that detoxifies glyoxylate inside peroxisomes. The lack of AGT activity results in a build-up of glyoxylate that is oxidized to oxalate, then culminating in hyperoxaluria often leading to kidney failure. Most pathogenic mutations reduce AGT specific activity because of catalytic defects, improper folding, mistargeting to mitochondria, reduced intracellular stability, dimerization, and/or aggregation. Administration of pyridoxine (PN), a precursor of PLP, is a therapeutic option available for PH1 patients carrying responsive genotypes through the ability of the coenzyme to behave as a chaperone. Here, we report the clinical and biochemical characterization of the novel mutation c.1093G > T (p.Gly365Cys) identified in a Japanese patient. In silico studies predict that the p.Gly365Cys mutation causes a steric clash resulting in a local rearrangement of the region surrounding the active site, thus possibly affecting PLP binding and catalysis. Indeed, the purified p.Gly365Cys mutant displays proper folding but shows an extensive decrease of catalytic efficiency due to an altered PLP-binding. When expressed in AGXT1-KO HepG2 cells the variant shows reduced specific activity and protein levels in comparison with wild type AGT that cannot be rescued by PN treatment. Overall, our data indicate that the mutation of Gly365 induces a conformational change at the AGT active site translating into a functional and structural defect and allow to predict that the patients will not be responsive to vitamin B6, thus supporting the usefulness of preclinical studies to guide therapeutic decisions in the era of precision medicine.


Assuntos
Hiperoxalúria Primária , Mutação de Sentido Incorreto , Humanos , Hiperoxalúria Primária/genética , Fosfato de Piridoxal/metabolismo , Mutação , Glioxilatos/metabolismo , Transaminases/metabolismo
15.
Nat Prod Res ; 37(3): 441-448, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34542359

RESUMO

A new glyoxylate-containing benzene derivative, methyl 2-(4-hydroxy-3-(3'-methyl-2'-butenyl)phenyl)-2-oxoacetate (1), together with ten known compounds (2-11), were isolated from the marine algicolous fungus, Aspergillus sp. SCSIO 41304. Their planar structures and absolute configurations were elucidated by detailed NMR, MS spectroscopic analysis and comparing with literature data. Compound 1 was isolated as a new fungal secondary metabolite, possessing a methyl glyoxylate moiety R-CO-CO-OCH3, which is rare in natural sources. All the isolated compounds (1-11) were tested for their antibacterial and enzyme inhibitory activities against acetylcholinesterase (AChE) and pancreatic lipase (PL). Among these compounds, aspulvinone H (4) showed moderate inhibition against AChE and PL with IC50 values of 25.95 and 47.06 µM, respectively. Further molecular docking simulation exhibited that compound 4 could well bind to the catalytic pockets of the AChE and PL.


Assuntos
Acetilcolinesterase , Aspergillus , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Aspergillus/química , Glioxilatos/metabolismo
16.
Histol Histopathol ; 38(4): 423-430, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36190183

RESUMO

This study evaluated the potential of endothelial progenitor cell (EPC)-derived exosomes as a therapeutic factor for neuronal apoptosis. Mouse EPCs were cultured in vitro, and exosomes were isolated and identified using transmission electron microscopy (TEM), particle size analysis and by determining the protein expressions of exosome markers (CD9, CD63 and Alix). The apoptotic rate of OGD-treated neurons was detected by Flow cytometry assay. The mRNA and protein expression levels were detected by RT-PCR and Western blot assay, respectively. Luciferase reporter assays determined the interaction between miR-221-3p and Bcl2l11. The results showed that most exosomes are 80-120 nm in diameter. Western blot assay showed that CD9, CD63 and Alix were enriched in exosomes. EPC-derived exosomes ameliorated OGD-induced neuronal apoptosis. Mechanistically, miR-221-3p from EPC-derived exosomes decreased the expression of bcl2l11 in OGD-induced neuronal apoptosis. Moreover, exosomes from miR-221-3p mimics transfected EPCs reduced OGD-induced neuronal apoptosis. In conclusion, miR-221-3p in EPC derived exosomes ameliorates OGD-induced neuronal apoptosis, which establish its potential as a new therapeutic method for patients with cerebrovascular diseases.


Assuntos
Células Progenitoras Endoteliais , Exossomos , MicroRNAs , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Células Progenitoras Endoteliais/metabolismo , Exossomos/genética , Exossomos/metabolismo , Apoptose , Glioxilatos/metabolismo
17.
Microbiol Res ; 266: 127224, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36327660

RESUMO

Understanding metabolic networks' architecture is central to successfully manipulating metabolic fluxes in microbial cell factories. The transition of central metabolism's architecture from acetogenic to gluconeogenic and from the canonical monocyclic architecture of the Krebs tricarboxylic acids (TCA) cycle to a bicyclic architecture in which the TCA and the dicarboxylic acids (DCA) cycles work in unison, with the glyoxylate bypass fulfilling the anaplerotic function, has been the subject of much debate and remains elusive. In this article, the author sheds light on the intricacies surrounding the transition of central metabolism from one architecture to another and shows that the transition from the monocyclic architecture to the bicyclic architecture is triggered in response to a minimum threshold signal of growth rate (≲0.40h-1) and is a consequence of competitions, on the one hand. between phosphotransacetylase (PTA) and α-ketoglutarate dehydrogenase (α-KGDH) for their common co-factor, free HS-CoA, and, on the other hand, between catabolic and anaplerotic routs for acetyl phosphate. Further restriction of carbon supply in the bioreactor to the point of starvation forces E. coli to further modify its central metabolism to the PEP-glyoxylate architecture to maintain the redox balance. Interestingly the sudden change from hunger ('famine') to carbon excess ('feast') leads to yet another architecture in which the methylglyoxal pathway figure prominently to maintain the adenylate energy charge. Moreover, the author sheds light on the biochemical implications of each architecture.


Assuntos
Escherichia coli , Glioxilatos , Escherichia coli/metabolismo , Glioxilatos/metabolismo , Ciclo do Ácido Cítrico , Carbono/metabolismo , Redes e Vias Metabólicas
18.
Microb Cell Fact ; 21(1): 222, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289548

RESUMO

BACKGROUND: The catabolite repressor/activator protein (FruR) is a global regulatory protein known to control the expression of several genes concerned with carbon utilization and energy metabolism. This study aimed to illustrate effects of the FruR mutant on the L-phenylalanine (L-PHE) producing strain PHE01. RESULTS: Random mutagenesis libraries of fruR generated in vitro were first integrated into the chromosome of PHE01 by CRISPR/Cas9 technique, and then the best mutant PHE07 (FruRE173K) was obtained. With this mutant, a final L-PHE concentration of 70.50 ± 1.02 g/L was achieved, which was 23.34% higher than that of PHE01. To better understand the mechanism, both transcriptomes and metabolomes of PHE07 were carried out and compared to that of PHE01. Specifically, the transcript levels of genes involved in gluconeogenesis pathway, pentose phosphate pathway, Krebs cycle, and glyoxylate shunt were up-regulated in the FruRE173K mutant, whereas genes aceEF, acnB, and icd were down-regulated. From the metabolite level, the FruRE173K mutation led to an accumulation of pentose phosphate pathway and Krebs cycle products, whereas the products of pyruvate metabolism pathway: acetyl-CoA and cis-aconic acid, were down-regulated. As a result of the altered metabolic flows, the utilization of carbon sources was improved and the supply of precursors (phosphoenolpyruvate and erythrose 4-phosphate) for L-PHE biosynthesis was increased, which together led to the enhanced production of L-PHE. CONCLUSION: A novel strategy for L-PHE overproduction by modification of the global transcription factor FruR in E. coli was reported. Especially, these findings expand the scope of pathways affected by the fruR regulon and illustrate its importance as a global regulator in L-PHE production.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fosfoenolpiruvato/metabolismo , Carbono/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Acetilcoenzima A/metabolismo , Proteínas Repressoras/metabolismo , Fenilalanina/metabolismo , Glioxilatos/metabolismo , Piruvatos/metabolismo
19.
Sci Rep ; 12(1): 15979, 2022 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-36155623

RESUMO

To survive and replicate in the host, S. Typhimurium have evolved several metabolic pathways. The glyoxylate shunt is one such pathway that can utilize acetate for the synthesis of glucose and other biomolecules. This pathway is a bypass of the TCA cycle in which CO2 generating steps are omitted. Two enzymes involved in the glyoxylate cycle are isocitrate lyase (ICL) and malate synthase (MS). We determined the contribution of MS in the survival of S. Typhimurium under carbon limiting and oxidative stress conditions. The ms gene deletion strain (∆ms strain) grew normally in LB media but failed to grow in M9 minimal media supplemented with acetate as a sole carbon source. However, the ∆ms strain showed hypersensitivity (p < 0.05) to hypochlorite. Further, ∆ms strain has been significantly more susceptible to neutrophils. Interestingly, several folds induction of ms gene was observed following incubation of S. Typhimurium with neutrophils. Further, ∆ms strain showed defective colonization in poultry spleen and liver. In short, our data demonstrate that the MS contributes to the virulence of S. Typhimurium by aiding its survival under carbon starvation and oxidative stress conditions.


Assuntos
Isocitrato Liase , Malato Sintase , Acetatos/metabolismo , Carbono/metabolismo , Dióxido de Carbono , Glucose , Glioxilatos/metabolismo , Ácido Hipocloroso , Isocitrato Liase/genética , Isocitrato Liase/metabolismo , Malato Sintase/genética , Malato Sintase/metabolismo , Nutrientes , Estresse Oxidativo , Salmonella typhimurium/metabolismo
20.
Ecotoxicol Environ Saf ; 244: 114056, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36075124

RESUMO

Bacteria possess protective mechanisms against excess Mn(Ⅱ) to reduce its toxicity. Stenotrophomonas sp. MNB17 showed high Mn(Ⅱ) removal capacity (92.24-99.16 %) by forming Mn-precipitates (MnCO3 and Mn-oxides), whose Mn-oxides content increased with increasing Mn(Ⅱ) concentrations (10-50 mM). Compared with 0 mM Mn(Ⅱ)-stressed cells, transcriptomic analysis identified genes with the same transcriptional trends in 10 mM and 50 mM Mn(Ⅱ)-stressed cells, including genes involved in metal transport, cell envelope homeostasis, and histidine biosynthesis, as well as genes with different transcriptional trends, such as those involved in oxidative stress response, glyoxylate cycle, electron transport, and protein metabolism. The upregulation of histidine biosynthesis and oxidative stress responses were the most prominent features of these metabolisms under Mn(Ⅱ) stress. We confirmed that the increased level of reactive oxygen species was one of the reasons for the increased Mn-oxides formation at high Mn(Ⅱ) concentrations. Metabolite analysis indicated that the enhanced histidine biosynthesis rather than the tricarboxylic acid cycle resulted in an elevated level of α-ketoglutarate, which helped eliminate reactive oxygen species. Consistent with these results, the exogenous addition of histidine significantly reduced the production of reactive oxygen species and Mn-oxides and enhanced the removal of Mn(Ⅱ) as MnCO3. This study is the first to correlate histidine biosynthesis, reactive oxygen species, and Mn-oxides formation at high Mn(Ⅱ) concentrations, providing novel insights into the molecular regulatory mechanisms associated with Mn(Ⅱ) removal in bacteria.


Assuntos
Compostos de Manganês , Manganês , Bactérias/metabolismo , Glioxilatos/metabolismo , Histidina , Ácidos Cetoglutáricos , Manganês/metabolismo , Manganês/toxicidade , Compostos de Nitrosoureia , Oxirredução , Óxidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Stenotrophomonas/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...